OATH-Frames: Characterizing Online Attitudes Towards Homelessness via LLM Assistants
Jaspreet Ranjit, Brihi Joshi, Rebecca Dorn, and
6 more authors
In Proceedings of EMNLP, 2024
Outstanding Paper Award @ EMNLP 2024; Jaspreet received a best poster award at USC CAIS’s annual symposium, ShowCAIS in Spring 2024.
Homelessness in the U.S. is widespread; individual beliefs and attitudes towards homelessness—often expressed on social media are complex and nuanced (e.g. critical as well as sympathetic). Such attitudes can be challenging to summarize at scale, obfuscating the broader public opinion which advocacy organizations use to guide public policy and reform efforts. Our work proposes an approach to enable a large-scale study on homelessness via two major contributions. First, with the help of domain experts in social work and their trainees, we characterize Online Attitudes towards Homelessness in nine hierarchical frames (OATH-Frames) on a collection of 4K social media posts. Further, in an effort to ease the annotation of these frames, we employ GPT-4 as an LLM assistant to the experts; GPT-4 + Expert annotation presents an attractive trade off owing to a 6.5× speedup in annotation time despite only incurring a 2 point F1 difference in annotation performance. Our effort results in a collection of 8K social media posts labeled by domain and trained experts (with and without GPT-4 assistance). Second, using predicted OATH-Frames on a Flan-T5-Large model trained on our data, we perform a large-scale analysis on 2.4M posts on homelessness. We find that posts that contain mentions of west coast states express more harmful generalizations of people experiencing homelessness (PEH) compared to posts about east coast states. We also find marked differences in attitudes across vulnerable populations as they are compared to PEH as being either more or less deserving of aid.